elektriksel-kismi-desarj-nedir-konu-gorseli

Orta gerilim ve yüksek gerilim ekipmanlarında kısa ya da uzun sürede oluşan, hatta yıkıcı düzeylere ulaşan bu fiziksel hasarların, izleme ve zamanında tespit ile önüne geçilebilir mi?

Kök sebepleri, türleri, detaylı analizleri, testleri, diğer tüm etkileri ve sonuçları ile kısmi deşarjı anlamaya çalışalım.  

Elektriksel kısmi boşalma olarak da tanımlanan kısmi deşarj nedir?

Elektriksel kısmı deşarj, iki iletken elektrot arasındaki dielektrik malzemenin yapısındaki boşluklar ya da devamlılığındaki problemler sebebiyle tam bir köprü oluşturamaması sonucu oluşan elektriksel boşalma ya da kıvılcımlardır.

IEC 60270’deki tanımına göre; iletkene bitişik veya ayrık izolasyonu sadece kısmi olarak aşarak iletkenler arasında oluşan elektriksel boşalmadır. Diğer bir deyişle; iki aktif iletken arasındaki izolasyon malzemesindeki kısmi bozulmadır.

IEEE’nin yaptığı araştırmaya göre; orta gerilim ve yüksek gerilim sistemlerinde meydana gelen yıkıcı hataların büyük bir oranı (%80’i) elektriksel kısmi deşarj kaynaklıdır (Resim 2).

Dielektrik malzemeyi deforme edebilecek kadar güçlü elektrik alanın olduğu her yerde (şaltlarda, kanallarda, kablolarda, kablo başlıklarında, kablo eklerinde, transformatörlerde) elektriksel kısmi deşarj oluşabilir.

Bu deşarjlar, katı izolasyon sistemindeki boşluklarda (kağıt, polimer vs.), çok katmanlı katı izolasyon sistemlerinin birleşme yüzeylerinde (farklı izolasyon malzemelerinin dielektrik sabitlerinin farklı olması sebebi ile), sıvı izolasyon sistemlerindeki gaz kabarcıklarında veya gaz ortamındaki iletkenin çevresinde (corona deşarjı) oluşabilir.

Genelde 1 mikro saniyeden daha kısa süreli darbeler (puls’lar) şeklinde görülür. Darbeler çok kısa süreli olmalarına karşın, darbe sırasında ortaya çıkan enerji, iletkeni saran dielektrik malzemenin bozulmasına, kontrol edilmeden bırakılması durumunda ise izolasyon hataları ile sonuçlanabilecek kadar güçlüdür.

Elektriksel kısmi deşarj, yüksek gerilim ile çalışan ya da yüksek gerilim taşıyan cihaz ve malzemlerde normal çalışma koşullarında dahi, yaşlanma kaynaklı bozulmalar, ısıl veya aşırı elektriksel stresler, uygun olmayan kurulumlar, hatalı işçilik veya uygun olmayan tasarımlar sebebiyle oluşabilir.

Dielektrik malzeme içinde ilerleyip büyümesi (elektriksel ağaçlanma; Resim 4 ve 5’te görüldüğü gibi) sonucu, izolasyonu yeterince zayıflatıp 3 fazlı sistemlerde fazlar arası ya da faz-toprak arasında kısa devre ile sonuçlanabilir.

Bilindiği üzere bazı elektriksel kısmi deşarjlar, izolasyonun ve dolayısı ile toplam sistemin (örnek: polimerik kablolar ve aksesuarları) sağlığı açısından aşırı derecede tehlikeli iken, yüksek gerilim havai hatlarındaki açık ve keskin noktalarında oluşan corona olayları veya açıkta kullanılan kablo sonlandırma uçlarının dış yüzeyindeki elektriksel kısmi deşarj olarları ise nispeten daha tehlikesizdir.

Kısmi deşarj ve ilgili hataların tespiti, kısmi deşarj olayının kritik seviyede olup olmadığının karar verilmesi prensibine dayanır.

Düşük seviyedeki kısmi deşarj olayı, “kritik olmayan”, “kabul edilebilir” ya da “kısa zamanda orta seviyede bir kısmi deşarj olayına mahal vermez” olarak değerlendirilir.

Arızaların tespiti, kısmi deşarj olayının eşik değerlerini (Tablo 1) aşarak kritik seviyede olup olmadığını testler ile belirleyerek gerçekleşir.

Eşik değerleri;

  • Kısmi deşarj olayı mevcut değil ya da kritik seviyelerin altında,
  • Kısmi deşarj olayı var ve hatanın ilerleyeceğini, daha detaylı incelemeye ve izlemeye ihtiyaç duyduğunu gösteren bir seviyede,
  • Kısmi deşarj olayının çok ilerlediğini, arızanın gerçekleşmek üzere olduğunu ve tehlike arz ettiğini gösteren bir seviyede. Bu seviye, acil inceleme ve müdehale gerektirir.
  • Kısmi deşarj olayı sırasında birçok enerji türü açığa çıkar (elektromanyetik, akustik, termal ve ışık enerjileri). Çıkan bu enerjiler ve ilgili enerji türüne ait test metotları ile kısmi deşarj olayı algılanabilir.
Yayılan Enerji Metot
Elektromanyetik UHF Alımı ve Değişken Toprak Voltajı
Akustik Duyulabilir ve 20kHz Ultrasonic Ses
Termal Termal Görüntüleme
Işık Optik ve Mor Ötesi Işın

 

Elektromanyetik Metot

Kısmi deşarj olayı sırasında, deşarjın olduğu kısımdan elektromanyetik (radio) dalga yayılımı gerçekleşir. Bu dalgalar, metal muhafaza içinde akım endüklenmesine sebep olur. Oluşan kısmi deşarj darbelerinin (puls’larının) yüksek frekanslı olması sebebiyle, topraklanan metalinempedansı küçük voltajlar yaratacak kadar büyük olur.

Bu vaka, 1980’lerde keşfedildi ve günümüzde Transient Earth Voltages (TEV) (Değişken toprak voltajı) olarak bilinir. Algılama, el dedektörü şeklindeki metalin yüzeyine kapasitif bir probun temasıyla olur.

TEV, izolasyonun içinde oluşan kısmi deşarjı algılamak için kurulmuş bir yöntemdir. Çoğunlukla 200 MHz olmasına karşın, kısmi deşarj kaynaklı elektromanyetik dalganın frekansı 1 GHz fazla olabilir. Bu enerji, Ultra High Frequency (UHF) ekipmanı kullanılarak algılanabilir. Çoklu antenler, “Time-of-Flight” tekniği ile kısmi deşarj kaynağının yerini tespit edebilir.

Akustik Metot

Hem duyulabilen hem de ultrasonik aralıklarda, yalıtkan yüzeyindeki kısmi deşarj olayı, çevresindeki havanın ani genleşmesine sebep olur ve bunun sonucu olarak bir basınç dalgası oluşturur. Duyulabilir aralıkta gelen ses, tava üzerinde yağda kızartılan bir et parçasından gelen

sese benzer. Ultrasonik ise, 20kHz’lik bir ses dalgasıdır. Algılama, 20kHz’e ayarlanmış hassas bir mikrofon yardımıyla yapılır ve duyulabilir frekansta bir sese dönüştürülerek bir kulaklık vasıtası ile duyulur. Bu teknik, metal muhafazanın içindeki ses enerjisinin dışarı çıkabileceği bir aralık olduğunda çok faydalıdır.

Termal Metot

Kısmi deşarj olayı sırasında, deşarjın olduğu kısımda yüksek akım yoğunluğu sebebiyle sıcak noktalar oluşur. Termal görüntüleme yöntemiyle tespiti mümkündür. Ancak çoğu yüksek gerilim elemanı metal kaplı olduğunda dolayı, termal yöntem ile sıcak  noktalara    erişim  zordur.

Bu nedenle termal görüntüleme çoğunlukla pratik değildir.

Işın Metodu

Kısmi deşarj olayı sırasında, elektronların iyonizasyonu ve rekombinasyon süreci sebebiyle fotonlar harekete geçer. Işık yoğunluğu, esas olarak deşarjın büyüklüğüne ve izolasyon ortamına bağlıdır.

Bu olay sırasında ışığın spektrumu, görülebilir aralıktan kızıl ötesine kadar geniş olabilir. Havadaki kısmi deşarj sırasında azot bolluğu hakimdir. Sonuç olarak, optik  enerjinin   %90’ı   mor  ötesi bölgede oluşturulurken, bir kısmı da karanlık ortamda görülebilir aralıkta oluşur. Tabiki tespitinin mümkün olması için, kısmi deşarj olan ekipman görüş mesafesinde olmalıdır.

Kısmi Deşarj Tanıları Üzerine Çığır Açan Teknolojiler

Pry-Cam

Anlık kısmi deşarj ölçümleri için tasarlanmıştır. Taşınabilir ve kablosuz tasarımıyle kolay, hızlı ve güvenilir; patentli elektromanyetik hassasiyet teknolojisi ile ileri seviyede kısmi deşarj darbe modellemesi yapar.

Galvanik izolasyonu sayesinde operatör için azami güvenlik sağlar, on-line ölçüm yaptığı için sistemin kapatılmasına ihtiyaç duymaz. Ayrıca birçok ekipmanın ölçümünü aynı günde yaparak test esnekliği sağlar.

Pry-Cam Grids

  • Sisteme sabitlenerek kısmi deşarj ve sıcaklığı sürekli olarak izlemeyi sağlar.
  • Hassas ve gelişmiş tanı sistemine sahiptir. Sisteme sabitlenerek web tabanlı uzaktan izleme imkanı sunar. Tıpkı Pry-Cam gibi galvanik izolasyona sahip olup, gelişmiş kısmi deşarj darbe modellemesi yapar.

Pry-Cam Wings Sensör

Kurulacağı ekipman üzerinde sıcaklık ve kısmi deşarj parametrelerinin ölçümü sağlayan sensördür.

İstenilen her cihazın üzerine yapıştırılarak kolay ve hızlı ölçüm yapar. Çalışmak için ihtiyaç duyduğu enerjiyi, kurulum yapıldığı tesisten sağlayamadığı taktirde Prysmian Harvesting Device (Enerji sağlama cihazı) sayesinde kolayca sağlar.

DLog

Analog sinyalleri (sıcaklıki, basınç, akım, gerilim gibi.) uzaktan izleme imkanı sunar.

Analog sinyaller izlemek için 4 adet girişe sahiptir. Programlanan herhangi bir zamanda ölçüm yapabilir. Uzaktan izleme için web tabanlı bir arayüzü vardır.